Author: lllyouo
Date: 20250225
tag: 最小生成树、最短路径生成树
link: https://www.acwing.com/problem/content/351/问题描述
分析
本题旨在求解最短路径生成树的数量。
首先,我们可以使用 Dijkstra 算法求出
仿照 Prim 算法思路,将所有节点按照 dist 从小到大排序,依次考虑把节点
根据乘法原理,把每一步种统计出来的数量相乘,即可得到答案。
参考代码
cpp
#include <bits/stdc++.h>
using namespace std;
const int N = 1010, MOD = (1 << 31) - 1;
int n, m, g[N][N];
int dist[N], st[N], ans = 1;
void dijkstra() {
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 1; i < n; i++) {
int k = -1;
for (int j = 1; j <= n; j++) {
if (!st[j] && (k == -1 || dist[j] < dist[k])) k = j;
}
st[k] = 1;
for (int j = 1; j <= n; j++) {
if(!st[j] && g[k][j] != 0x3f3f3f3f)
dist[j] = min(dist[j], dist[k] + g[k][j]);
}
}
}
void prime() {
memset(st, 0, sizeof st);
st[1] = true;
for (int i = 1; i < n; i++) {
int k = -1;
for (int j = 1; j <= n; j++) {
if (!st[j] && (k == -1 || dist[k] > dist[j]))
k = j;
}
long long cnt = 0;
for (int j = 1; j <= n; j++) {
if (st[j] && dist[k] == dist[j] + g[j][k])
cnt++;
}
st[k] = 1;
ans = (long long)ans * cnt % MOD;
}
}
int main() {
cin >> n >> m;
memset(g, 0x3f, sizeof g);
for (int i = 1; i <= m; i++) {
int a, b, c; cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c);
}
dijkstra();
prime();
cout << ans << endl;
return 0;
}