Author: lllyouo
Date: 20251014
tag: 树上问题, 树链剖分
link: https://www.luogu.com.cn/problem/P3384问题描述
分析
略
参考代码
cpp
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 10;
struct SegmentTree {
int l, r, dat;
int lazy; // 懒惰标记
} t[N * 4];
int fa[N], dep[N], siz[N], son[N], top[N], dfn[N], dfn_cnt, rnk[N];
int h[N], e[2 * N], ne[2 * N], idx;
int n, m, r, p, a[N];
void add(int x, int y) {
e[idx] = y, ne[idx] = h[x], h[x] = idx++;
}
void pushup(int p) {
t[p].dat = t[p << 1].dat + t[p << 1 | 1].dat;
}
void pushdown(int p) {
if (t[p].lazy) {
t[p << 1].dat += t[p].lazy * (t[p << 1].r - t[p << 1].l + 1);
t[p << 1 | 1].dat += t[p].lazy * (t[p << 1 | 1].r - t[p << 1 | 1].l + 1);
t[p << 1].lazy += t[p].lazy;
t[p << 1 | 1].lazy += t[p].lazy;
t[p].lazy = 0;
}
}
void build(int p, int l, int r) {
t[p].l = l, t[p].r = r;
if (l == r) {
t[p].dat = rnk[l];
return;
}
int mid = (l + r) >> 1;
build(p << 1, l, mid);
build(p << 1 | 1, mid + 1, r);
pushup(p);
}
void modify(int p, int l, int r, int v) {
if (t[p].l >= l && t[p].r <= r) {
t[p].dat += v * (t[p].r - t[p].l + 1);
t[p].lazy += v;
return;
}
pushdown(p);
int mid = (t[p].l + t[p].r) >> 1;
if (l <= mid) modify(p << 1, l, r, v);
if (r > mid) modify(p << 1 | 1, l, r, v);
pushup(p);
}
int query(int p, int l, int r) {
if (t[p].l >= l && t[p].r <= r) return t[p].dat;
pushdown(p);
int mid = (t[p].l + t[p].r) >> 1;
int ans = 0;
if (l <= mid) ans += query(p << 1, l, r);
if (r > mid) ans += query(p << 1 | 1, l, r);
return ans;
}
void dfs1(int u, int f) {
fa[u] = f, dep[u] = dep[f] + 1, siz[u] = 1;
for (int i = h[u]; i != -1; i = ne[i]) {
int v = e[i];
if (v == f) continue;
dfs1(v, u);
siz[u] += siz[v];
if (siz[v] > siz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int ftop) {
top[u] = ftop, dfn[u] = ++dfn_cnt, rnk[dfn_cnt] = a[u];
if (son[u]) dfs2(son[u], ftop); // 存在重儿子则深入
for (int i = h[u]; i != -1; i = ne[i]) {
int v = e[i];
if (v != son[u] && v != fa[u]) dfs2(v, v); // 存在轻儿子则深入
}
}
void modify_path(int x, int y, int v) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) swap(x, y);
modify(1, dfn[top[x]], dfn[x], v);
x = fa[top[x]];
}
if (dep[x] < dep[y]) swap(x, y);
modify(1, dfn[y], dfn[x], v);
}
void modify_tree(int x, int v) {
modify(1, dfn[x], dfn[x] + siz[x] - 1, v);
}
int query_path(int x, int y) {
int ans = 0;
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) swap(x, y);
ans += query(1, dfn[top[x]], dfn[x]);
x = fa[top[x]];
}
if (dep[x] < dep[y]) swap(x, y);
ans += query(1, dfn[y], dfn[x]);
return ans;
}
int query_tree(int x) {
return query(1, dfn[x], dfn[x] + siz[x] - 1);
}
signed main() {
cin >> n >> m >> r >> p;
for (int i = 1; i <= n; i++) cin >> a[i];
memset(h, -1, sizeof h);
for (int i = 1; i < n; i++) {
int x, y;
cin >> x >> y;
add(x, y), add(y, x);
}
dfs1(r, 0);
dfs2(r, r);
build(1, 1, n);
while (m--) {
int o, x, y, z;
cin >> o >> x;
if (o == 1) {
cin >> y >> z;
modify_path(x, y, z);
} else if (o == 2) {
cin >> y;
cout << query_path(x, y) % p << endl;
} else if (o == 3) {
cin >> z;
modify_tree(x, z);
} else {
cout << query_tree(x) % p << endl;
}
}
return 0;
}